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Data 

• Everything can be data as long as it provides 
useful information. 

 

• Can you provide some examples? 

 

• How do you analysis data? 
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Data analysis paradigms 

Statistics Machine learning 

Model Network, Graphs 

Data point Examples/instances 

Response Label 

Parameters Weights 

Covariate Feature 

Fitting/Estimation Learning 

Test set performance Generalization 

Regression/Classification Supervised Learning 

Density estimation, Clustering Unsupervised Learning 

4 From a machine (computer) only perspective, data can be structured or unstructured 
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The main use of the internet is to share cute pictures of cats and dogs  

The human brain is very good at recognising which is which  

Internet and data sharing 
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Recognition and Classification 

• Human brain is good at recognising and classifying objects: 
– This happens quickly, robustly and reliably. Also capable of learning 

 
• This happens automatically without conventional logic (i.e. flow 

charts or sequential steps) even in the presence of other obscuring 
information. 
 

• In our everyday activities, we process, classify information to make 
decisions 
– Physicists & Engineers: is this event signal or background noise? 
– Astronomers: is this blob a star or a galaxy? 
– Doctors: is this patient sick or well? 
– Economists & Bankers: is this company a sound investment or junk? 
– Employers: is this applicant employable or a liability? 
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The Human brain 

• Recognition and Classification 
activities linked to over 
~100,000,000,000 biological neurons 
arranged in a complex neural 
network. 

• Each neuron has many inputs and 
only 1 output connected to MANY 
externals (neurons , muscles, etc) 

• A neuron works by processing all 
it’s inputs and if the internal 
function is satisfied triggers an 
electric impulse on its output, 
which is then distributed across 
the network. 

Biological Neuron 
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Modeling neurons artificially 

Biological  Computational 

• Dendrites  inputs 

• Synapses  weighted input 
– Synaptic strength  Weights 

• Nucleus  Summation 
– Firing threshold  Activation-

function (Step function) 

• Axon  output 

– Bouton 

 

 

 

Perceptron 

𝑥1 

𝑥2 

𝑥3 

𝑥𝑛 

 𝑥𝑖𝑤𝑖 𝑓 

𝑤1 

𝑤2 

𝑤3 

𝑤𝑛 
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Example perceptron  

• Inputs  

– 𝑥1 = 0.6, 𝑥2 = 1.0 

• Synaptic strengths 

– 𝑤1 = 0.5, 𝑤2 = 0.7 

• Firing threshold ≥ 1 

• Computation 

– Sum of synapses 

• 𝑥1𝑤1 + 𝑥2𝑤2  =  

• 0.6 ∗ 0.5 + 1.0 ∗ 0.7 = 

• 0.3 + 0.7 = 𝟏. 𝟎  

 

𝑥1 

𝑥2 
 𝑥𝑖𝑤𝑖 𝑓 

𝑤1 

𝑤2 

Discussion point: What is the effect of varying the synaptic strengths? 
10 



Class exercise 1 

• Design the perceptron for implementing binary 
matching based on 3 different inputs? 

– Case 1: All 3 inputs must be equally present for a 
match 

– Case 2: Any 2 out of 3 inputs must be present for a 
match. 

• Design the perception for implementing binary 
matching of two inputs only when either input is 
present but not when both are present.  
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Solutions  

Exercise 1a 

• Case 1  
– Synaptic strengths 

• 𝑤1 =
1
3 , 

•  𝑤2 = 1 3 , 

•  𝑤3= 1 3  

– Firing threshold ≥ 1 

• Case 2 
– Synaptic strengths 

• 𝑤1 = 2 3 ,  

• 𝑤2 = 2 3 , 

•  𝑤3=
2
3  

– Firing threshold ≥ 1 

Exercise 1b 

Input  input output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

The required solution is not  
linear separable, so we shall  
come back to it later..  
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Neural Network Architecture 

• Nodes: Main computational element that raises its output according to a preset 
activation or transfer function based on the sum up its set of inputs. 
– The activation or transfer function is non-linear in ANNs.  
– Bias nodes: Special nodes that generate a fixed output regardless of inputs 

• Connections: Main element responsible for transferring output of a node to 
another node.  
– On input, each node has a distinct weight for each incoming connection.  

• Layers: Nodes are arranged in blocks called layers 
– First layer (block of nodes) is also called the input layer. Nodes in this layer do not perform 

computations, they just passes information. 
– Last layer is the output layer. 
– Other layers in-between first and last are known as hidden layers, They are responsible for 

computations 
– The output of each node in a layer is connected as input to ALL nodes of next layer. 
– Each node in a layer receives the outputs of ALL nodes in previous layer.  
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Example 2: multilayer perceptron  

• Firing threshold ≥ 1  

Discussion points:  
- Is this the solution to exercise 1b?  
- How were the weights obtained? 

𝑥1 

𝑥2 

 𝑥𝑖𝑤𝑖 𝑓 

 𝑥𝑖𝑤𝑖 𝑓 

 𝑥𝑖𝑤𝑖 𝑓 

𝑤1 =
1
2  

𝑤2 =
1
2  

𝑤1 = 1 

𝑤2 = 1 

𝑤1 = −2 

𝑤2 = 1 
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Neural Networks 

Neuron/node  i has many inputs Uj.  Apply weights, form yi= wijUj 
and generate output  Ui=F(yi ) = F( wijUj) 
F is thresholding function.  Output increases monotonically from 0 to1.  
Linear central region but saturates at extremes. 

Often use logistic (sigmoid) function    
 

 

 

Sometimes  use 

F(y)=tanh(y) 
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Duplicating the working of brain neurons 

Can simulate 
networks with 
various topologies 
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Type of Neural Networks 

• Feedforward Artificial Neural Networks 
– Single layer perceptron 
– Multi-layer perceptron 

• Convolutional Neural Network (CNN) 
– Inspired by the visual cortex 
–  Unit response can be approximated mathematically by a convolution 

operation  
– Variants of multilayer perceptron..  
– Mostly used for image and video recognition 

• Recurrent neural networks (RNN) 
– Data is propagated in both forward and backward 
–  Exhibits temporal memory useful for processing arbitrary sequences 

of inputs 
– Useful for handwriting recognition, speech recognition and other 

general sequence processors  
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Multilayer Artificial Neural Networks 

 

• Nodes arranged in layers.  

• First layer – input 

• Last layer –single output, ideally 1 (for 
S)  or 0 (for B)  

• In between - ‘hidden’ layers 

• Action is sychronised: all of first layer 
effects the second (effectively) 
simultaneously, then second layer 
effects third, etc 

 

A network architecture for  binary classification: 
recognise data ‘events’ (all of the same format) as 
belonging to one of 2 classes. 
e.g. Signal or Background?   (S or B?) 
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Learning in Neural Networks 

• Just like humans, Neural Networks can also learn in a 
crudely similar way to how we think biological learning 
works. That is implemented by changing and/or 
strengthening the connections of the Synapses. 

• Learning in artificial neural networks occurs through 
varying the network's weights, with some kind of 
learning algorithm. 
– There are many different algorithms with their own 

separate advantages and disadvantages.  

– The aim is to find a set or matrix of weights which would 
map any input to a correct output. 
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Types of learning 

• Supervised learning: During supervised learning, 
the network is provide with both input and 
expected output. 

• Unsupervised learning: The network is provided 
with only the inputs and is responsible for 
determining or classifying the outputs. 

• Reinforcement learning: Similar to supervised 
learning but the network is provided with 
rewards rather than the expected output. Aim is 
to maximise reward through trial-and-error 
process. 

The “deep” in deep learning refers to the number of (hidden + output) layers in the network.  
Training involves the process of back-propagation.  
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Perceptron learning rule 

Steps 

• For each weight/input 

– Calculate Error or difference 
between expected and real 
output 

– Change in weight is calculated 
as the product of an abritary 
learning-rate, the Error and 
the input  

– Calculate the new weight  

 

• 𝐸 = 𝑇 − 𝑈 

• ∆𝑤𝑖 = 𝛼 ∗ 𝐸 ∗ 𝑥𝑖 

• (New) 𝑤𝑖 = 𝑤𝑖 + ∆𝑤𝑖 

• Where 
– 𝐸 = error 

– 𝑇 = Target output 

– 𝑈 = actual output 

– 𝛼 = Learning rate 

– 𝑥𝑖  = input 

– 𝑤𝑖= weight of input 
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ANN Deep Learning 
using samples of known events 

• Present events whose type is known:  has a desired output T, 
which is  0 or 1. Call the actual output U.  

• Define ‘Badness’  B= ½ (U-T)2.  “Training the net” means 
adjusting the weights to reduce total (or average) B. 

• Strategy: change each weight wij by step proportional to   -
dB/dwij .  

• Do this event by event (or in batches, for efficiency). 

• All we need do is calculate those differentials... start with 
final layer and work backwards ('back-propagation') 
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Performance analysis 

Actual  
Positive 

Actual 
Negative 

True True  
Positive (TP) 

False 
Positive (FP) 

False False  
Negative (FN) 

True  
Negative (TN) 

Positives (P) Negatives (N) 

Analysis 

• Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 

• Accuracy = 
𝑇𝑃+𝑇𝑁

𝑃+𝑁
 

 

• Sensitivity =  
𝑇𝑃

𝑃
 

 

• Specificity = 1 −
𝐹𝑃

𝑁
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P = TP + FN 
N = FP + TN 



Performance: Output histograms 

Select signal by requiring U>cut 
 
Small cut value: high efficiency but high 
background 
 
Large cut value: low background but low 
efficiency 
  

Exactly where to put the cut depends on  
(i) The penalties for Type I and Type II errors 
(ii) The prior probabilities of S and B  

Reminder: 
Type I error: excluding a signal event 
Type II error: including a background event 

24 

After training - over the whole training sample  
many times -  the outputs from the Signal and  
Background samples will look something like this 

Note the actual shape of the histograms 
means nothing. Any transformation of the 
x-axis does not affect the results 
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Background = 
𝐹𝑃

𝑁
 and Signal = 

𝑇𝑃

𝑃
 



Performance: ROC* plots 

Fs 

Fb 

Loose cut 

Tight cut 

1 

0 
0 

1 

  
 
If net is working, background falls faster 
than efficiency 
 
No discrimination gives 45 degree line 
 
The bigger the bulge, the better 

To draw ROC plot can use histograms, or 
go back to raw data, rank it according to 
the output (use R function order), and 
step through it 
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*Receiver Operating Characteristic 

Plot fraction of background accepted 
against fraction of signal accepted, sliding the  
cut from 0 (nothing) to 1 (everything) 
 
(Note that conventions vary on how to do this) 

X 

X 

Y 

Y 

Z 

Z 
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X-axis = 
𝐹𝑃

𝑁
 and y-axis = 

𝑇𝑃

𝑃
 



Training, over-training, testing, validating 

Network is trained on the sample, and then re-trained, and then re-re-
trained…getting better all the time, as measured by ∑(T i-Ui)2 
 
An ‘over-trained’  network will select peculiarities of individual events in the 
sample. Improved performance on training sample but worse performance on 
other samples 
 
Recommended procedure: have separate training sample (about 80% of data) 
and testing sample (remaining 20%). Train on training sample until 
performance on testing sample stops improving 
Easy to do if you have lots of samples - which is generally the case for   large 
Monte Carlo samples but not for real data 
 
Validating.  Given output X, what can you say about probability of S or B?  (i.e. 
those histograms)    Separate sample needed for validation. 
 
Or cross-validation. For each event, train on the rest of the sample and 
compare truth and prediction, avoiding bias.   (If too slow, use sub-samples ‘K-
fold cross validation’) 
 
 
 

26 Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy  



Warning! Language ambiguities 

• Signal Efficiency 
Fraction of signal events remaining after the cut 

 
• Background Efficiency 

(i) Fraction of background events remaining after the cut, OR 
(ii) fraction of background events removed by cut 

 
• Contamination (or Contamination probability) 

(i) Fraction of background events remaining after cut  
OR (ii) fraction of selected events which are background 

 
• Purity 

Fraction of selected events which are signal 
 

• True positive rate 
Same as signal efficiency - not purity 

 
•  False positive rate 

Same as background efficiency (i) - not Contamination 
27 
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8 

Neural Network Regression 

Not considered here but trivial extension - 
 
Desired output not simple true/false but numeric 
 
Examples: 
•House price from location, no. of rooms, etc 
•Pupil progress from past performance+background 
 
Train to minimise 1/2 (T-U)2, test, predict as before, but T is  
a (scaled) number, not just 0 or 1. 
 
 
 
NN classification is just a subset of NN regression 
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Now Lab work!! 
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       Lab Problem 

• Tell a camel from a dromedary: 

• Given 5 inputs, and events of 2 types: 

•  either 1-2-3-2-1 (+ noise)   or 0-4-1-4-0 (+noise) 

  

  

      

  

30 

Camel 
Dromedary 

  

The camel has a single hump;  
The dromedary , two;  
Or else the other way around. 

I'm never sure. Are you?  
  

Ogden Nash 

ro 

Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy  

http://www.poemhunter.com/ogden-nash/poems/
http://www.poemhunter.com/ogden-nash/poems/


sample1  
0 -0.05997873 3.881889 1.060744 4.022852 -0.05597012 
1 0.881978 2.055923 3.158514 1.972982 1.190973 
0 0.07778947 3.950015 0.9496442 3.976893 0.04745127 
1 0.9759833 2.03223 2.990049 2.017683 1.062813 
0 -0.001502924 3.862673 0.8942838 4.020337 -0.02683437 
0 0.07309237 3.982063 1.043907 3.860677 -0.1394614 
1 1.075466 1.973227 3.115331 1.935488 0.9712817 
… 
 
sample2 
0 1.587052 4.715568 -0.8595715 1.504009 2.145417 
1 2.52062 2.682234 3.909693 0.2611399 0.3924642 
1 -0.5450664 -1.449915 -0.2813677 4.057942 0.9299015 
0 -1.047951 4.223808 3.068302 9.673196 3.915838 
1 -2.863264 1.250906 0.293735 -0.2080808 -0.6673748 
1 -0.2963963 2.988054 1.449716 2.326187 -0.5594592 
1 4.581936 6.263028 5.522227 3.473845 -2.042601 
… 
sample3 
0 -0.7064082 3.266121 0.2208592 4.825086 0 
0 0.912854 3.48706 0.3057296 4.402847 -0.07224356 
0 0.2116067 4.659067 0.9210807 4.95437 -0.7723788 
1 0.7854812 2.079436 1.336324 2.16746 0.5728526 
0 0.1380971 0 1.143737 4.632105 0.2767737 
0 0.4398898 4.436032 1.55822 3.477277 0.3308824 
1 0 1.320041 3.46353 1.087296 1.499402 
… 

3 data samples to work on: 
Download from http://barlow.web.cern.ch/barlow/Sample1.txt etc 
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 Small added 
noise 

 Large added 
noise 

 Medium added 
noise plus some losses 

First column is 0 or 1 
for C or D 
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Download the datasets 

http://barlow.web.cern.ch/barlow/Sample1.txt 

 

http://barlow.web.cern.ch/barlow/Sample2.txt 

 

http://barlow.web.cern.ch/barlow/Sample3.txt 
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ALPHA=0.05  #  learning parameter 
 
nodes=c(5,7,10,1)       # 5 inputs, 2 hidden layers, with 7 and 10 nodes , 1 output  
nlayers=length(nodes) -1          # 3  sets of weights 
 
net=list() # set up empty list 
#  net[[ j ]] holds weight matrix feeding nodes of layer j+1 from nodes in layer j  
   
#   make weights and fill with random numbers 
for(j in 1:nlayers) net[[ j ]] <- matrix(runif(nodes[ j ]*nodes[ j +1 ]),nodes[j+1],nodes[j]) 
  
netsays <- function(x) { #  Returns net output for some input vector x 
       for(j in 1:nlayers) x <- 1/(1+exp(-net[[ j ]] %*% x)) 
       return(x) 
        } 
 
 backprop <- function(layer,n1,n2,factor){ # recursive function  used for back-propagation 
        if(layer>1) for(n in 1:nodes[layer-1])  
              backprop(layer-1,n2,n,factor*net[[layer]][n1,n2]*r[[iayer]][n2]*(1-r[[layer]][n2])) 
        net[[layer]][n1,n2] <<- net[[layer]][n1,n2] - ALPHA*factor*r[[layer]][n2] 
        } 
 
netlearns <- function(x,truth) { # like netsays but changes weights 
        r <<- list()   # to contain the outputs of all nodes in all layers 
        r[[1]] <<- x     # the input layer 
        for(layer in 1:nlayers) r[[layer+1]] <<- as.vector(1/(1+exp(-net[[layer]] %*% r[[layer]]))) 
        u <- r[[nlayers+1]] # final answer, for convenience 
        for(n in 1:nodes[nlayers]) backprop(nlayers,1,n,(u-truth)*u*(1-u)) 
        } 
 

Sample code for writing your own ANN -  
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OR Use the R package 

Package by S. Fitsch et al 

• Installation (To be performed only 

once)  
install.packages(“neuralnet”) 

• Loading (To be performed once per 

session) 

library(neuralnet) 

• Obtaining help (Please read 

carefully) 

help(neuralnet) 

Sample  R code 
library(neuralnet) 
 
input1<- c(0,0,1,1)  
input2<- c(0,1,0,1)  
truth<- c(0,1,1,0)  
 
df <- data.frame(truth,input1,input2) 
nnet<-
neuralnet(truth~input1+input2,df,c(4,2)) 
 
plot(nnet) 
 
test=compute(nnet,t(c(1,1))) 
test$net.result 

https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf 
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Another example  

library(neuralnet) 
df <- read.table("http://barlow.web.cern.ch/barlow/Sample1.txt",header=FALSE) 
print(head(df)) 
V1 <- df[,1];V2 <- df[,2];V3 <- df[,3] 
V4 <- df[,4];V5 <- df[,5];V6 <- df[,6] 
nnet<-neuralnet(V1~V2+V3+V4+V5+V6,df,c(4,5), lifesign="full", 
 algorithm="backprop", learningrate=0.05, linear.output=FALSE) 
 
plot(nnet) 
 
test=compute(nnet,t(c(0,3,1,4,1))) 
test$net.result 
 
test=compute(nnet,t(c(1,2,3,2,1))) 
test$net.result 
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Some (possibly) useful R stuff 
sample <- read.table(“Sample1.txt”,header=FALSE) 
Nsample <- dim(sample)[1] 
print(head(sample)) 
for (i in 1:Nsample) {print(sample[i,1]); print(sample[i,-1])} 
 plot(c(0,1),c(0,1)) 
v <- netsays(t(sample[,-1])) 
p <- sample[order(v),1] 
nc <- sum(sample[,1]==0) 
nd <- Nsample-nc 
nnc <- nc 
nnd <- nd 
for (i in 1:length(p)) {if(p[i]==1) {nd <- nd-1} else {nc <- nc-1} 
 points(nc/nnc,nd/nnd,pch=‘.') } 
 
vc <- rep(0,nnc) 
vd <- rep(0,nnd) 
nc <- 0 
nd <- 0 
for (i in 1:Nsample){ 
    itype <- sample[i,1] 
    isay <- netsays(as.numeric(sample[i,-1])) 
    if(itype==0) {nc <- nc+1;vc[nc] <- isay} else {nd<- nd+1;vd[nd] <- isay} 
} 
 
hc <- hist(vc,breaks=seq(0,1,.05)) 
hd <- hist(vd,breaks=seq(0,1,.05)) 
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Time to work on your own!! 

Attempt all questions.. 
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Lab Session 

6 Questions 
 

1. What is the effect of varying the learning parameter α? 

2. What is the effect of using more, or fewer, nodes in the hidden layers? 

3. What is the effect of using more, or fewer, hidden layers? 

4. What is the effect of pre-processing the input data to give each data input mean zero 
and standard deviation 1? If you feel strong enough, also try Principal Component 
Analysis 

5. What is the effect of using a tanh function rather than a sigmoid ? (Use different 
differential) 

6. What happens if a network trained on one sample is applied to another sample? 

The ‘what is the effect of…’ questions, refer to both the eventual separation and the training time. 
Sample 2 and sample 3 can be used for this - sample 1 is too easy. 
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Either write your own code, or use the neuralnet package to set up a network with 2 
hidden layers, with 8 and 5 nodes 
 
Train and test with the file sample1. It should achieve perfect  separation. If not, keep 
trying till you do. 
 
Train and test with sample2.  Draw ROC plots to show the performance. Make sure you are 
not over-training. 
 
Now try sample3 in the same way.  
 
When done, Prepare a couple of slides to show your results, for presentation in the round-
up session. 
 
if you still have time, tackle any of the other problems that look interesting. 

More questions 
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