
Artificial Neural Networks

Clement Onime

ICTP, Trieste, Italy

1

Outline

• Introduction

• Artificial Neural Networks

• Examples

• Lab exercise

• Presentation of your results

2

Data

• Everything can be data as long as it provides
useful information.

• Can you provide some examples?

• How do you analysis data?

3

Data analysis paradigms

Statistics Machine learning

Model Network, Graphs

Data point Examples/instances

Response Label

Parameters Weights

Covariate Feature

Fitting/Estimation Learning

Test set performance Generalization

Regression/Classification Supervised Learning

Density estimation, Clustering Unsupervised Learning

4 From a machine (computer) only perspective, data can be structured or unstructured

5

The main use of the internet is to share cute pictures of cats and dogs

The human brain is very good at recognising which is which

Internet and data sharing

Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

6
Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

Recognition and Classification

• Human brain is good at recognising and classifying objects:
– This happens quickly, robustly and reliably. Also capable of learning

• This happens automatically without conventional logic (i.e. flow

charts or sequential steps) even in the presence of other obscuring
information.

• In our everyday activities, we process, classify information to make
decisions
– Physicists & Engineers: is this event signal or background noise?
– Astronomers: is this blob a star or a galaxy?
– Doctors: is this patient sick or well?
– Economists & Bankers: is this company a sound investment or junk?
– Employers: is this applicant employable or a liability?

7

The Human brain

• Recognition and Classification
activities linked to over
~100,000,000,000 biological neurons
arranged in a complex neural
network.

• Each neuron has many inputs and
only 1 output connected to MANY
externals (neurons , muscles, etc)

• A neuron works by processing all
it’s inputs and if the internal
function is satisfied triggers an
electric impulse on its output,
which is then distributed across
the network.

Biological Neuron

Image by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy
8

Modeling neurons artificially

Biological  Computational

• Dendrites  inputs

• Synapses  weighted input
– Synaptic strength  Weights

• Nucleus  Summation
– Firing threshold  Activation-

function (Step function)

• Axon  output

– Bouton

Perceptron

𝑥1

𝑥2

𝑥3

𝑥𝑛

 𝑥𝑖𝑤𝑖 𝑓

𝑤1

𝑤2

𝑤3

𝑤𝑛

9

Example perceptron

• Inputs

– 𝑥1 = 0.6, 𝑥2 = 1.0

• Synaptic strengths

– 𝑤1 = 0.5, 𝑤2 = 0.7

• Firing threshold ≥ 1

• Computation

– Sum of synapses

• 𝑥1𝑤1 + 𝑥2𝑤2 =

• 0.6 ∗ 0.5 + 1.0 ∗ 0.7 =

• 0.3 + 0.7 = 𝟏. 𝟎

𝑥1

𝑥2
 𝑥𝑖𝑤𝑖 𝑓

𝑤1

𝑤2

Discussion point: What is the effect of varying the synaptic strengths?
10

Class exercise 1

• Design the perceptron for implementing binary
matching based on 3 different inputs?

– Case 1: All 3 inputs must be equally present for a
match

– Case 2: Any 2 out of 3 inputs must be present for a
match.

• Design the perception for implementing binary
matching of two inputs only when either input is
present but not when both are present.

11

Solutions

Exercise 1a

• Case 1
– Synaptic strengths

• 𝑤1 =
1
3 ,

• 𝑤2 = 1 3 ,

• 𝑤3= 1 3

– Firing threshold ≥ 1

• Case 2
– Synaptic strengths

• 𝑤1 = 2 3 ,

• 𝑤2 = 2 3 ,

• 𝑤3=
2
3

– Firing threshold ≥ 1

Exercise 1b

Input input output

0 0 0

0 1 1

1 0 1

1 1 0

The required solution is not
linear separable, so we shall
come back to it later..

12

Neural Network Architecture

• Nodes: Main computational element that raises its output according to a preset
activation or transfer function based on the sum up its set of inputs.
– The activation or transfer function is non-linear in ANNs.
– Bias nodes: Special nodes that generate a fixed output regardless of inputs

• Connections: Main element responsible for transferring output of a node to
another node.
– On input, each node has a distinct weight for each incoming connection.

• Layers: Nodes are arranged in blocks called layers
– First layer (block of nodes) is also called the input layer. Nodes in this layer do not perform

computations, they just passes information.
– Last layer is the output layer.
– Other layers in-between first and last are known as hidden layers, They are responsible for

computations
– The output of each node in a layer is connected as input to ALL nodes of next layer.
– Each node in a layer receives the outputs of ALL nodes in previous layer.

13

Example 2: multilayer perceptron

• Firing threshold ≥ 1

Discussion points:
- Is this the solution to exercise 1b?
- How were the weights obtained?

𝑥1

𝑥2

 𝑥𝑖𝑤𝑖 𝑓

 𝑥𝑖𝑤𝑖 𝑓

 𝑥𝑖𝑤𝑖 𝑓

𝑤1 =
1
2

𝑤2 =
1
2

𝑤1 = 1

𝑤2 = 1

𝑤1 = −2

𝑤2 = 1

14

Neural Networks

Neuron/node i has many inputs Uj. Apply weights, form yi= wijUj
and generate output Ui=F(yi) = F( wijUj)
F is thresholding function. Output increases monotonically from 0 to1.
Linear central region but saturates at extremes.

Often use logistic (sigmoid) function

Sometimes use

F(y)=tanh(y)

15

Duplicating the working of brain neurons

Can simulate
networks with
various topologies

Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

Type of Neural Networks

• Feedforward Artificial Neural Networks
– Single layer perceptron
– Multi-layer perceptron

• Convolutional Neural Network (CNN)
– Inspired by the visual cortex
– Unit response can be approximated mathematically by a convolution

operation
– Variants of multilayer perceptron..
– Mostly used for image and video recognition

• Recurrent neural networks (RNN)
– Data is propagated in both forward and backward
– Exhibits temporal memory useful for processing arbitrary sequences

of inputs
– Useful for handwriting recognition, speech recognition and other

general sequence processors

16

Multilayer Artificial Neural Networks

• Nodes arranged in layers.

• First layer – input

• Last layer –single output, ideally 1 (for
S) or 0 (for B)

• In between - ‘hidden’ layers

• Action is sychronised: all of first layer
effects the second (effectively)
simultaneously, then second layer
effects third, etc

A network architecture for binary classification:
recognise data ‘events’ (all of the same format) as
belonging to one of 2 classes.
e.g. Signal or Background? (S or B?)

17 Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

Learning in Neural Networks

• Just like humans, Neural Networks can also learn in a
crudely similar way to how we think biological learning
works. That is implemented by changing and/or
strengthening the connections of the Synapses.

• Learning in artificial neural networks occurs through
varying the network's weights, with some kind of
learning algorithm.
– There are many different algorithms with their own

separate advantages and disadvantages.

– The aim is to find a set or matrix of weights which would
map any input to a correct output.

18

Types of learning

• Supervised learning: During supervised learning,
the network is provide with both input and
expected output.

• Unsupervised learning: The network is provided
with only the inputs and is responsible for
determining or classifying the outputs.

• Reinforcement learning: Similar to supervised
learning but the network is provided with
rewards rather than the expected output. Aim is
to maximise reward through trial-and-error
process.

The “deep” in deep learning refers to the number of (hidden + output) layers in the network.
Training involves the process of back-propagation.

19

Perceptron learning rule

Steps

• For each weight/input

– Calculate Error or difference
between expected and real
output

– Change in weight is calculated
as the product of an abritary
learning-rate, the Error and
the input

– Calculate the new weight

• 𝐸 = 𝑇 − 𝑈

• ∆𝑤𝑖 = 𝛼 ∗ 𝐸 ∗ 𝑥𝑖

• (New) 𝑤𝑖 = 𝑤𝑖 + ∆𝑤𝑖

• Where
– 𝐸 = error

– 𝑇 = Target output

– 𝑈 = actual output

– 𝛼 = Learning rate

– 𝑥𝑖 = input

– 𝑤𝑖= weight of input

20

ANN Deep Learning
using samples of known events

• Present events whose type is known: has a desired output T,
which is 0 or 1. Call the actual output U.

• Define ‘Badness’ B= ½ (U-T)2. “Training the net” means
adjusting the weights to reduce total (or average) B.

• Strategy: change each weight wij by step proportional to -
dB/dwij .

• Do this event by event (or in batches, for efficiency).

• All we need do is calculate those differentials... start with
final layer and work backwards ('back-propagation')

21 Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

22 Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

Performance analysis

Actual
Positive

Actual
Negative

True True
Positive (TP)

False
Positive (FP)

False False
Negative (FN)

True
Negative (TN)

Positives (P) Negatives (N)

Analysis

• Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃

• Accuracy =
𝑇𝑃+𝑇𝑁

𝑃+𝑁

• Sensitivity =
𝑇𝑃

𝑃

• Specificity = 1 −
𝐹𝑃

𝑁

 23

P = TP + FN
N = FP + TN

Performance: Output histograms

Select signal by requiring U>cut

Small cut value: high efficiency but high
background

Large cut value: low background but low
efficiency

Exactly where to put the cut depends on
(i) The penalties for Type I and Type II errors
(ii) The prior probabilities of S and B

Reminder:
Type I error: excluding a signal event
Type II error: including a background event

24

After training - over the whole training sample
many times - the outputs from the Signal and
Background samples will look something like this

Note the actual shape of the histograms
means nothing. Any transformation of the
x-axis does not affect the results

Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

Background =
𝐹𝑃

𝑁
 and Signal =

𝑇𝑃

𝑃

Performance: ROC* plots

Fs

Fb

Loose cut

Tight cut

1

0
0

1

If net is working, background falls faster
than efficiency

No discrimination gives 45 degree line

The bigger the bulge, the better

To draw ROC plot can use histograms, or
go back to raw data, rank it according to
the output (use R function order), and
step through it

25

*Receiver Operating Characteristic

Plot fraction of background accepted
against fraction of signal accepted, sliding the
cut from 0 (nothing) to 1 (everything)

(Note that conventions vary on how to do this)

X

X

Y

Y

Z

Z

Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

X-axis =
𝐹𝑃

𝑁
 and y-axis =

𝑇𝑃

𝑃

Training, over-training, testing, validating

Network is trained on the sample, and then re-trained, and then re-re-
trained…getting better all the time, as measured by ∑(T i-Ui)2

An ‘over-trained’ network will select peculiarities of individual events in the
sample. Improved performance on training sample but worse performance on
other samples

Recommended procedure: have separate training sample (about 80% of data)
and testing sample (remaining 20%). Train on training sample until
performance on testing sample stops improving
Easy to do if you have lots of samples - which is generally the case for large
Monte Carlo samples but not for real data

Validating. Given output X, what can you say about probability of S or B? (i.e.
those histograms) Separate sample needed for validation.

Or cross-validation. For each event, train on the rest of the sample and
compare truth and prediction, avoiding bias. (If too slow, use sub-samples ‘K-
fold cross validation’)

26 Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

Warning! Language ambiguities

• Signal Efficiency
Fraction of signal events remaining after the cut

• Background Efficiency

(i) Fraction of background events remaining after the cut, OR
(ii) fraction of background events removed by cut

• Contamination (or Contamination probability)

(i) Fraction of background events remaining after cut
OR (ii) fraction of selected events which are background

• Purity

Fraction of selected events which are signal

• True positive rate
Same as signal efficiency - not purity

• False positive rate

Same as background efficiency (i) - not Contamination
27

Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

2
8

Neural Network Regression

Not considered here but trivial extension -

Desired output not simple true/false but numeric

Examples:
•House price from location, no. of rooms, etc
•Pupil progress from past performance+background

Train to minimise 1/2 (T-U)2, test, predict as before, but T is
a (scaled) number, not just 0 or 1.

NN classification is just a subset of NN regression

Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

Now Lab work!!

29

 Lab Problem

• Tell a camel from a dromedary:

• Given 5 inputs, and events of 2 types:

• either 1-2-3-2-1 (+ noise) or 0-4-1-4-0 (+noise)

30

Camel
Dromedary

The camel has a single hump;
The dromedary , two;
Or else the other way around.

I'm never sure. Are you?

Ogden Nash

ro

Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

http://www.poemhunter.com/ogden-nash/poems/
http://www.poemhunter.com/ogden-nash/poems/

sample1
0 -0.05997873 3.881889 1.060744 4.022852 -0.05597012
1 0.881978 2.055923 3.158514 1.972982 1.190973
0 0.07778947 3.950015 0.9496442 3.976893 0.04745127
1 0.9759833 2.03223 2.990049 2.017683 1.062813
0 -0.001502924 3.862673 0.8942838 4.020337 -0.02683437
0 0.07309237 3.982063 1.043907 3.860677 -0.1394614
1 1.075466 1.973227 3.115331 1.935488 0.9712817
…

sample2
0 1.587052 4.715568 -0.8595715 1.504009 2.145417
1 2.52062 2.682234 3.909693 0.2611399 0.3924642
1 -0.5450664 -1.449915 -0.2813677 4.057942 0.9299015
0 -1.047951 4.223808 3.068302 9.673196 3.915838
1 -2.863264 1.250906 0.293735 -0.2080808 -0.6673748
1 -0.2963963 2.988054 1.449716 2.326187 -0.5594592
1 4.581936 6.263028 5.522227 3.473845 -2.042601
…
sample3
0 -0.7064082 3.266121 0.2208592 4.825086 0
0 0.912854 3.48706 0.3057296 4.402847 -0.07224356
0 0.2116067 4.659067 0.9210807 4.95437 -0.7723788
1 0.7854812 2.079436 1.336324 2.16746 0.5728526
0 0.1380971 0 1.143737 4.632105 0.2767737
0 0.4398898 4.436032 1.55822 3.477277 0.3308824
1 0 1.320041 3.46353 1.087296 1.499402
…

3 data samples to work on:
Download from http://barlow.web.cern.ch/barlow/Sample1.txt etc

31

 Small added
noise

 Large added
noise

 Medium added
noise plus some losses

First column is 0 or 1
for C or D

Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

http://barlow.web.cern.ch/barlow/Sample1.txt

Download the datasets

http://barlow.web.cern.ch/barlow/Sample1.txt

http://barlow.web.cern.ch/barlow/Sample2.txt

http://barlow.web.cern.ch/barlow/Sample3.txt

32

http://barlow.web.cern.ch/barlow/Sample1.txt
http://barlow.web.cern.ch/barlow/Sample1.txt
http://barlow.web.cern.ch/barlow/Sample2.txt
http://barlow.web.cern.ch/barlow/Sample2.txt
http://barlow.web.cern.ch/barlow/Sample1.txt
http://barlow.web.cern.ch/barlow/Sample1.txt

33

ALPHA=0.05 # learning parameter

nodes=c(5,7,10,1) # 5 inputs, 2 hidden layers, with 7 and 10 nodes , 1 output
nlayers=length(nodes) -1 # 3 sets of weights

net=list() # set up empty list
net[[j]] holds weight matrix feeding nodes of layer j+1 from nodes in layer j

make weights and fill with random numbers
for(j in 1:nlayers) net[[j]] <- matrix(runif(nodes[j]*nodes[j +1]),nodes[j+1],nodes[j])

netsays <- function(x) { # Returns net output for some input vector x
 for(j in 1:nlayers) x <- 1/(1+exp(-net[[j]] %*% x))
 return(x)
 }

 backprop <- function(layer,n1,n2,factor){ # recursive function used for back-propagation
 if(layer>1) for(n in 1:nodes[layer-1])
 backprop(layer-1,n2,n,factor*net[[layer]][n1,n2]*r[[iayer]][n2]*(1-r[[layer]][n2]))
 net[[layer]][n1,n2] <<- net[[layer]][n1,n2] - ALPHA*factor*r[[layer]][n2]
 }

netlearns <- function(x,truth) { # like netsays but changes weights
 r <<- list() # to contain the outputs of all nodes in all layers
 r[[1]] <<- x # the input layer
 for(layer in 1:nlayers) r[[layer+1]] <<- as.vector(1/(1+exp(-net[[layer]] %*% r[[layer]])))
 u <- r[[nlayers+1]] # final answer, for convenience
 for(n in 1:nodes[nlayers]) backprop(nlayers,1,n,(u-truth)*u*(1-u))
 }

Sample code for writing your own ANN -

Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

OR Use the R package

Package by S. Fitsch et al

• Installation (To be performed only

once)
install.packages(“neuralnet”)

• Loading (To be performed once per

session)

library(neuralnet)

• Obtaining help (Please read

carefully)

help(neuralnet)

Sample R code
library(neuralnet)

input1<- c(0,0,1,1)
input2<- c(0,1,0,1)
truth<- c(0,1,1,0)

df <- data.frame(truth,input1,input2)
nnet<-
neuralnet(truth~input1+input2,df,c(4,2))

plot(nnet)

test=compute(nnet,t(c(1,1)))
test$net.result

https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf
34

Another example

library(neuralnet)
df <- read.table("http://barlow.web.cern.ch/barlow/Sample1.txt",header=FALSE)
print(head(df))
V1 <- df[,1];V2 <- df[,2];V3 <- df[,3]
V4 <- df[,4];V5 <- df[,5];V6 <- df[,6]
nnet<-neuralnet(V1~V2+V3+V4+V5+V6,df,c(4,5), lifesign="full",
 algorithm="backprop", learningrate=0.05, linear.output=FALSE)

plot(nnet)

test=compute(nnet,t(c(0,3,1,4,1)))
test$net.result

test=compute(nnet,t(c(1,2,3,2,1)))
test$net.result

35

36

Some (possibly) useful R stuff
sample <- read.table(“Sample1.txt”,header=FALSE)
Nsample <- dim(sample)[1]
print(head(sample))
for (i in 1:Nsample) {print(sample[i,1]); print(sample[i,-1])}
 plot(c(0,1),c(0,1))
v <- netsays(t(sample[,-1]))
p <- sample[order(v),1]
nc <- sum(sample[,1]==0)
nd <- Nsample-nc
nnc <- nc
nnd <- nd
for (i in 1:length(p)) {if(p[i]==1) {nd <- nd-1} else {nc <- nc-1}
 points(nc/nnc,nd/nnd,pch=‘.') }

vc <- rep(0,nnc)
vd <- rep(0,nnd)
nc <- 0
nd <- 0
for (i in 1:Nsample){
 itype <- sample[i,1]
 isay <- netsays(as.numeric(sample[i,-1]))
 if(itype==0) {nc <- nc+1;vc[nc] <- isay} else {nd<- nd+1;vd[nd] <- isay}
}

hc <- hist(vc,breaks=seq(0,1,.05))
hd <- hist(vd,breaks=seq(0,1,.05))

Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

Time to work on your own!!

Attempt all questions..

37

Lab Session

6 Questions

1. What is the effect of varying the learning parameter α?

2. What is the effect of using more, or fewer, nodes in the hidden layers?

3. What is the effect of using more, or fewer, hidden layers?

4. What is the effect of pre-processing the input data to give each data input mean zero
and standard deviation 1? If you feel strong enough, also try Principal Component
Analysis

5. What is the effect of using a tanh function rather than a sigmoid ? (Use different
differential)

6. What happens if a network trained on one sample is applied to another sample?

The ‘what is the effect of…’ questions, refer to both the eventual separation and the training time.
Sample 2 and sample 3 can be used for this - sample 1 is too easy.

38 Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

Either write your own code, or use the neuralnet package to set up a network with 2
hidden layers, with 8 and 5 nodes

Train and test with the file sample1. It should achieve perfect separation. If not, keep
trying till you do.

Train and test with sample2. Draw ROC plots to show the performance. Make sure you are
not over-training.

Now try sample3 in the same way.

When done, Prepare a couple of slides to show your results, for presentation in the round-
up session.

if you still have time, tackle any of the other problems that look interesting.

More questions

39 Slide by Rodger Barlow – 2017 CODATA Summer School on Research Data Science, Trieste, Italy

